The status of energy storage markets


2020/12/16 10:07:36
The term 'energy storage' covers technologies that range from lithium-ion, solid-state, sodium-ion, sodium-sulphur, and redox flow batteries (RFB), through to supercapacitors and flywheels, or hydropower and compressed air energy storage (CAES).
For stationary markets, RFBs based on vanadium or zinc are being deployed, while various other flow battery chemistries are also being developed further. However, the stationary market is not reliant on electrochemical storage, with solutions such as compressed air and various forms of gravitational storage being discussed for long-duration (>4h) applications.
For smaller form-factor batteries, the growth in IoT and wearables offers an opportunity for different battery chemistries and form factors, including thin-film and flexible batteries. And of course, Li-ion battery technology, the incumbent for consumer devices, EVs, and new stationary storage, is still evolving. State-of-the-art solutions such as NMC 622 and NCA cathodes are likely to give way to NCMA or NMC 811 or single-crystal variants, graphite-based anodes may be replaced by lithium-metal or silicon, while liquid electrolytes will continue to incorporate new additives or be replaced entirely by solid electrolytes.
Currently, the broad energy storage market can be sub-divided into storage types that are: at a formative or exploratory stage; emerging (such as flexible and printed batteries or compressed air energy storage); and established and consolidated (e.g. EV batteries and some grid-level energy storage systems). There is a huge variety within these groups in terms of the technology, application, form factor, mechanical properties, and materials used in their energy storage solutions.